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Abstract. We study steady-state conical extrusion of an isotropic, power-law hardening material with a Coulomb
friction condition present at the die faces. An asymptotic theory is developed based on an axial velocity field which
is nearly "slug-like", i.e., a deformation field for which the transverse variations of the axial velocity are modest
in size. However, although the velocity is "slug-like", within the asymptotic limit considered the shear stresses are
not negligible compared to the longitudinal deviatoric stresses. For this reason the theory accounts for the first
manifestations of inhomogeneous deformation. In practical terms the validity of the asymptotic theory generally
requires either the friction coefficient to be small or the die slope Ah/L to be small (where Ah is the radius
reduction and L the die length). The primary result of the work is the set of equations (76)-(78). In addition, the
present formulation enables for the first time the development of a model of inhomogeneous deformation in
conical extrusion which is analogous to the very popular inhomogeneous deformation theory developed by
Orowan for plane-strain sheet rolling. Results are presented for a number of examples illustrating the depature
from a state of homogeneous compression which is typically found.

1. Introduction

Conical extrusion has attracted considerable attention from researchers interested in materials
processing for many years. The present paper is an attempt to provide some additional'
insight into this difficult subject by taking a look at the problem from a slightly different
angle using asymptotic methods. The most popular methods of analysis in this subject have
been concentrated in three areas: slip-line analysis, upper-bound solutions, and finite-
element methods. The number of studies in each of these areas are so numerous that a
complete bibliography can not be provided here. However, a few references to help the
interested reader get started in the subject include: Collins and Williams [1], Chenot et al. [2],
Richmond and Morrison [3], Avitzur [4-7], Osakada and Niimi [8], Lee, Mallett and Yang
[9], Lee, Mallett and McMeeking [10], and Kobayashi [11].

We will focus our attention on steady-state extrusion and assume that we have an isotropic
work-hardening material wherein the flow stress is proportional to a power of the total
plastic strain. We will include elasticity initially, although we will see from the analysis that
in the present context its contribution is secondary. Of course to recover residual stresses its
effect can not generally be neglected. The analysis will be valid for axisymmetric dies of
rather general cross-sectional shape hi(2) where £ is the axial position along the die centerline.
However, specific calculations will be restricted to conical dies. We will limit ourselves to a
friction boundary condition, i.e., Coulomb friction, where the shear stress at the die surface
is proportional to the normal stress, but the analysis can be pursued for a much wider range
of boundary conditions if desired.
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Fig. 1. Schematic of conical extruder

The goal of the present paper is to develop an approximate theory for the conical extrusion
of an isotropic work-hardening material. As we shall see, the key ingredient behind the
present approximation is that the axial velocity is nearly one-dimensional with transverse
variations appearing at second order, i.e., the flow is a perturbation of a "slug-like" flow.
Note, however, that in what follows the shear stresses are generally of the same order of
magnitude as the longitudinal deviatoric stresses and consequently the stress field is not
necessarily a small perturbation from a state of homogeneous compression. Also note that
the transverse variations of the axial velocity field and the deformation of initially plane
sections which appear at second order will be evaluated. Admittedly the assumption of a near
"slug-like" flow is fairly restrictive and of somewhat limited practical utility, but the results
are nonetheless interesting and instructive, and offer a potentially useful simple case against
which more elaborate numerical calculations can be tested.

At the heart of the approximation of "slug-like" flow will be the assumption that : =
(Ah/L) (o / Yo) is small compared to unity; Ah is the change in the die radius from entrance
to exit (i.e., the radius reduction), L is the length of the die, p is the friction coefficient, a
is the characteristic pressure (consequently %oa is the characteristic shear stress) and Y0 is the
characteristic flow stress, i.e., the initial yield stress. The transverse variation of the axial
velocity will be shown to be of order /3 and therefore our restriction requiring / to be
small implies a near "slug-like" flow. For convenience we introduce 6 = AhIL and z = Y/a
and write : = (65/Z. In what follows the above assumption will generally be satisfied by b6

being small compared to unity, since the parameter = Y/la is typically of order unity.
Physically speaking the flow is "slug-like" either because the slope of the die wall is small
(i.e., 6 = AhIL < 1), or the friction coefficient # is small, or both are small. From a practical
point of view, the friction coefficient p is often rather small and we will see later that for the
specific cases examined here the calculations will be restricted to values of p less than about
0.2 (for larger values of p we generally find that the asymptotic theory is not valid). In
addition, a further assumption will be made in order to allow us to simplify the friction
boundary condition at the die surface, namely, we will assume that the slope of the die wall
is sufficiently gentle so that we may neglect terms of order 62 in the stress field. We will,
however, compute the contribution to the radial variation in the axial velocity which occurs
at this order. We will also find that the cases of most interest, namely those departing furthest
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from a state of homogeneous compression, will correspond to p/T = 0(1) and therefore 62
will necessarily be small since we require /i = 6p/T to be small.

Within the confines of the asymptotic theory being considered we identify two subcases
of practical interest. The first case corresponds to deformation having relatively weak shear
stresses, i.e., a perturbation from a state of homogeneous compression. The second and more
interesting case alluded to above corresponds to deformations for which the shear stresses
have a magnitude comparable to the longitudinal deviatoric stresses and we refer to it as
inhomogeneous deformation. The two cases are identified by the magnitude of the parameter
p/ = uoa/Y 0 which is the ratio of the characteristic shear stress to the characteristic flow
stress. The case of homogeneous compression corresponds to ,/r < 1 and it is found to be
valid when the friction coefficient p is sufficiently small so that P/ln (1/p) < 6. The second
case of inhomogeneous deformation corresponds to p/z = 0(1) and it is valid for friction
coefficients for which p/ln (1/p) = 0(6). The main result of the paper is the set of coupled
equations (76)-(78) which determines the normal stress, shear stress and longitudinal
deviatoric stress.

As we will see later, within the present formulation for conical extrusion one can identify
the counterpart of the popular approximation made by Orowan [12] for inhomogeneous
deformation in strip rolling. Using his tremendous insight, Orowan derived an approximate
theory for inhomogeneous plane-strain deformation during rolling based on a somewhat ad
hoc analogy between rolling deformation and Prandtl's [13] solution for compression of a
plastic strip between parallel plates. Unfortunately a similar analogy is not easily made for
conical extrusion and consequently, to this author's knowledge, an approximation similar
to Orowan's has not been made for conical extrusion. Here we will systematically identify
an approximation equivalent to Orowan's, however, because we find that it is based on a
somewhat ad hoc assumption we will present only a limited number of results for this
case. A separate paper will specifically address the strip-rolling problem using the present
approach.

2. Formulation

(a) Governing equations

We begin with the well-known elastic-plastic equations which in dimensional form are given
during plastic flow by (in the sequel a caret will denote a dimensional quantity),

,j = 2 i,j + ,j,) = D , + 6, (1)

d= Di _ Dkk bi sij, 1 (2)

(elastic part)

ICk = I (3)3K jkk

j5i = '1j (4)
(plastic part)

Dk = 0, (5)
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and the equilibrium equations

8oej = 0, (6)

understanding that the superscripts e and p denote the elastic and plastic part, respectively.
Dij is the total strain rate, d is the deviatoric strain rate, 8iu is the total stress, s, is the
deviatoric stress, i is the velocity field and Oij is the velocity gradient matrix. is the
plastic multiplier and the stress rates dii and so are the Jaumann or corotational stress rates,
i.e., Pij = aFI/at + )k OFij0/Xk + 2pjFp + 2pi F where ii = (i.j - )ji) is the vorticity
tensor. G is the shear modulus, Kis the bulk modulus and v will be Poisson's ratio. For purely
elastic loading or unloading we consider the above equations omitting the plastic terms.

We assume that the flow stress is proportional to a power of the total plastic strain and
the flow-rate or yield criterion is

= Y ( + 'n (7)

with the total plastic strain ep given by an integral of the plastic strain rate following a
material particle, i.e.,

p = ,J/di, (8)

where iis the time and Y (the initial yield stress), Eo and n are material parameters. Typical
values might place n between 5 and 10 and Eo in the neighbourhood of 0.01.

The equations are now made dimensionless. We use cylindrical coordinates (Q, 4, z) and
the axial and radial coordinates are made dimensionless using the characteristic lengths in
the corresponding directions, i.e., the length of the die L and the change in the die radius from
entrance to exit Ah = h(O) - h(L), respectively,

z = i/L, = /Ah. (9)

Motivated by mass conservation the required dimensionless form for the velocity com-
ponents in the axial and radial directions is

V = ,/ U, V = ve/ 1U, (10)

where = Ah/L and U is the axial velocity of the material entering the die. We also
introduce a dimensionless die radius e = h(z) = hI(z)/Ah.

The deviatoric stresses are of the order of the flow stress of the material and therefore they
are made dimensionless using a stress magnitude characteristic of the flow stress (see (7)), i.e.,

sq = i / Yo. (11)

The total stresses aij, however, are made dimensionless by a stress magnitude typical of the
pressure in the die. For the time being we will simply denote this characteristic stress by ao
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and write

a = y /a,. (12)

Along with this we introduce the parameter z = Y0o a. A specific choice for a0 will be made
later, however one example would be to take oa equal to the maximum value of I a,, I since
we will see that within the context of the present approximation - a. will be equal to the
die pressure at leading order.

Time and the plastic multiplier are made dimensionless as follows,

t = t/(L/U), = /(U/YoL). (13)

From (2) a convenient elastic strain rate scale is the stress magnitude Y0 divided by the shear
modulus G (or bulk modulus) times the characteristic time L/U. Consequently, the elastic
strain rates are made dimensionless as follows,

D = D,,/(YOU/GL). (14)

Lastly, we nondimensionalize the plastic strain rates by a characteristic plastic strain rate
associated with the flow, namely UIL,

D = D6,/(U/L). (15)

Finally the governing equations (1)-(6) for the case of axisymmetric deformation now
take on the following dimensionless form; the equilibrium equations,

±6T + LsQZ+ ±Q -a+ 0, (16)
aQ az Q

sz + 6 zz + 0, (17)
O zT aO Q

the strain-rate equations,

ea Q = DQPQ + aDeQ, Q = D; + aD~g,¢, (18)

av = DZP + cDco, (19)

zv+ 62 = 26 (DP + Qz, (20)

(where = Y/G), the elastic strain rates,

i- 3 kk ,j -S ,
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1 - 2v kk (22)
Dkk = 2 (22)2(1 + v) z

the plastic strain rates,

DP = As, , Dk = 0, (23)

and the flow-rule,

ys = ( + where EP = O dt. (24)

Note that r = Y/ o appears in the above equation due to the different scalings used for sij
and a,, and that = Yo/G is typically of order 10- 3 and therefore we will assume that it is
small.

Using the fact that si, = D, and s = - (s,, + s,,zz) we can rewrite the flow-rule as

2 21n

S2 + S z = -{1 + A/ + i dt (25)

where we define S2 = S + 2 + S Sz.
The boundary conditions include the following:
(i) Rigid-body motion of the undeformed material approaching the die. Consequently, the

dimensionless axial velocity ahead of the die is unity,

v = 1, ahead of the die. (26)

(ii) Vanishing normal component of velocity at the impenetrable die faces, i.e., v · n = 0
on = h(z). Using cylindrical coordinates this becomes

dh
V - VZ - = 0 on e = h(z). (27)

(iii) A friction boundary condition at the die faces. In particular, we take the shear stress
to be proportional to the normal stress with the proportionality constant, i.e., the friction
coefficient, taken to be . This gives

l{%ee - 26rh'so, + 62h'2 zz} = se(l - 62h'2) + h'(,,ee - azz), on e = h(z),

(28)

where h' = dh/dz.
(iv) The remaining condition is a condition on the applied tension in the material after it

leaves the die. In extrusion there is generally no net applied tension, however, if we were to
consider drawing one would typically have a nonzero applied tension. In the present study
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we will restrict our attention to the deformation in the die alone and we will not evaluate the
deformation and unloading after the material leaves the die. Therefore we will model the exit
condition for extrusion by requiring that there is no net axial force at the exit section of the
die, i.e.,

27t hl) ozzed = Fapplied = 0, at z = 1. (29)

(b) Asymptotic expansions

To begin with, we expand the velocity field and strain rates in terms of a small parameter
/3, which will be identified shortly,

v = V( + pV(l ) + .....

Di = D P °0 + DP + ...... , (30)

D, = Dj + B3e' + .....

The equations (18)-(23) therefore become

av[°)+ av[")
ae agE~V'( ~~°+D° + 3 D f + . .., (31)

+ /3 + = D$ + DPO + D;} + ... , (32)
e e

avZ+3 avZ ±D
+ # D + e s )D + .DP+ °+ D + (33)

D0 - 3Dkyj 
+ .(D - D ij) + .. = Si, (35)

1- 2v (
Dkk + + + +) T (36)2(1 + v) z

DP2 + /DPi + °.. =. s, (37)

DkPk + Dkk + 0. (38)

Turning to the stresses, we expand the normal components of the total and deviatoric
stresses in terms of the parameter as

s = s'('O) + fls(' + 
(39)

a, = S
)
'+ /3al) + ...
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where = Q, z, or and there is no sum on the repeated index here. However, motivated
by the friction boundary condition (28) it is convenient to rescale the shear stress as

S = I¶ (s) + f((l)o + ). (40)
e: - S Z ez ezT

This is equivalent to scaling the original dimensional shear stress by Itao; i.e., sxz = Sz/(ao) ·

The reason for this rescaling is that it is now apparent that the magnitude of the shear stress
is, to a large degree, controlled by the friction boundary condition. With this redefined shear
stress the equilibrium equations and leading terms in the friction boundary condition
become

+ Ue 6 + - +o = 0,

aegz e (41a,b)

1 5 aa=
(QesZ) + - 0,Q () I az

5
*ee -s -z - h'(,, - zz) = O(ut, 52). (42)

It

In the friction boundary condition the neglect of the omitted terms is consistent with the key
assumptions being made in this paper; terms of a similar magnitude in the equilibrium
equations will be neglected shortly. Lastly, expanding the plastic multiplier as = 20 +
fiA, + . . ., we also have from (23),

DPeO + PDPe' + = AoSe,) + f( 0sl) + IS ) + . ., (43)

Dzof + #POf +s + = Io + J(oS!) + Iszz)) + (44)

DP + flD + .+ os + (os + + ... , (45)

av0() avo) a v()o
-+I + + . = 26(D±P D + D cP d + D + ... ),

we obtain after retaining the leading-order terms

av(O) aVl 6 aV(O) (47)+ fi + O .... (47)
ag a az Tz
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From this we establish one of the fundamental assumptions of the present theory, namely,
we require 6b/ to be small compared to unity and consequently it is appropriate to take

/3 = o < 1. (48)

This clearly amounts to restricting attention to axial velocities which, at leading order, are
independent of the radial coordinate, i.e., "slug-like" flows. In addition, in equation (47)
note that we will find that the term 2 av(°) /az is often small compared to the other three terms
retained, however, it is easily retained without incurring any added difficulty.

At leading order we now have from (31)-(34)

a = DP, V = DP, (49a,b)

- =?,D- P (50)
z z

avO)
Z =0, (51)

and from (51) clearly v) will be a function of z alone. At second order, from (31)-(33) we
similarly have

e - oDP + D ° 1 e )= D= + D (52)

ae /
)

3O

AVZ - DP + a Dzz, (53)

and from (47) with / = //zr we have

OvaZ S) _ ~(o~ 62 av(°)
-_ 2%% zso) (54)

Qz /3 az'

Furthermore, from (31), (32) and (33), equation (38) requiring the trace of the plastic strain
rate to vanish gives,

= !0 av[°) vt0DkPkO + DkPk + A... + V + V

_ ±() Oo + ± . .. = 0, (55)e2 /32 )
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which at first and second order can be written respectively as

--- + + = 0, (56)

av(') av') v(') a 1 - 2v a
y + '+- = A Dkk kk (57)aZ Q Q 2(1 + v)/~,

where from (36) we have used

1 - 2v .

2(1 + v) z

3. Solution

(a) Elastic-plastic region

Since we will be interested primarily in the deformation in the plastic region, we begin with
a consideration of the solution in this region. From (51) we find that the axial velocity is
independent of the radial coordinates at leading order and hence it is a function only of z,

vz = vz (z). (58)

The radial component of viscosity is found in terms of the axial component by integrating
(56) to find

v( ) dvZ (59)2 dz'

where we have used the symmetry condition on the centerline that v,(0, z) = 0. A radial
variation in the axial velocity enters at next order and is ultimately determined from (54)
which gives

2jvolo) - 62 evO 252' --- 0) s(Oz) dvz ) 2 e d2v(60)-- 2Ao~z ) 2-- + z
00 2 fSlo az s( dz / 2 dz 2

where from (50) and (44) we have used A0 = (dv 0 )' /dz)/sz) and we have also used (59) for v °).

From the boundary condition on the velocity field at the die surface 0 = h(z) we have at
leading order

v °) - h'v?0 ) = 0, on e = h(z),

or using (59)

d(h2v 0 ) 
dz
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Consequently,

v ) = C/h2 (z) = h2(0)/h2 (z). (61)

where C is a constant which is easily found to equal h2 (0) in order to satisfy mass conserva-
tion, i.e., the net dimensionless mass flow rate through the die is equal to h2(0). Using (61)
the transverse variation in the axial velocity obtained from (60) for a conical extruder
(h" = 0) becomes

av l ) 4h2(O)h' s(O) 3 6h'
h3 's() -4 h (62)

From expression (59) for v[°) we now see that av)/ae = v)/Q and therefore from (49)
DP, = D,, giving from (43) and (45)

s(° = sq) and therefore am = U4O) (63)

Recalling that we have s,, = - (s + s,,ee) and since we found s) = (s) we have

s = - 2s. (64)

Using (63), i.e., a) = a(,,) the equilibrium equations become

+ - + . .+ = 0,
+Q '\aQ ee / az +(65a,b)

1 ~ oa1 a 6 aa~}\1 a (es[ ° )-+ 6 a + ( (es )) f iao) + o
e as # az aeQ uz /

In addition, (63) allows us to write

(0) = a(0 + IS(°) (66)

Therefore, at leading order the governing equilibrium equations become

o= 0, (67)

1 0 a- aa = 6 ( aa +3 s )
(68)ee t T_ =z -- Lz 2 az * (68)

Note that the radial equilibrium equation (67) has undergone considerable simplification
and that the axial equilibrium equation (68) has been essentially unaltered preserving a
balance between axial stress and shear stress. As we will see soon, axial derivatives are
generally of O(#p/b) and therefore the terms on the right side of (68) are 0(1) and must be
retained.
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We now see from (67) that at leading order the total radial stress does not vary in the cross
section plane, but is a function only of axial position,

0e) = (ao) (z). (69)

From the second equilibrium equation we can write the shear stress as

5(o) =_ _ d(o) 3 reas 
0- 2d - 0 z do. (70)

2 dz 2#0 o Oz

The friction condition (42) on the die faces = h(z) can be written using (66) as

-=T) = (O) + 3 h',s(0 ) (71)Qz ee 2 ZZ'

and substituting for the shear stress from (70) we obtain an equation for () in terms of s(o

da'e + 4 () - 3h2 d rJh(z) QS!o. de. (72)
dz 6h(z) h2dz

For a balance in this equation we now observe the previously stated point that axial
derivatives are generally of order /b.

The remaining task is to obtain the leading-order terms in the flow-rule. From (64) we
have to leading order S2 = s(0)2 (see (25)) and since from (44) and (46) Ao = DPz/sz) and
DP0 = o(u/1/z)sz, equation (25) becomes at leading order

4 ')2 + ( O) SgZ2 3 + J o DzP0 [4 ( (o) )]2 dt} (73)3c(32 q3- z4o)

We also have from (50) DzP?' = dvz)/dz giving

)2 + 4 ( )2 4 1 + I f dz( [ + ) 2 ] 1/2dt}2 (74)
3 91 eJ dz 3 4zS)/ °/dt}(7

Lastly, it is convenient in this steady-state problem to change integration variables from t
to z. Consequently, using dz/dt v and v(0) = h2(0)/h 2(z) the integral following a material
particle (given by the streamlines o/h(z) = constant at leading order) can be written to
leading order as

+ 2 {l - z[~r h' )4 2]/2 }2/fs0 +4 -(0)2 41 2 ho 4] .

+3 ez= g { j h[1 + 3 s()) dz (75)

In summary, we now have the three coupled equations for the three unknowns a°0) (z), ,z)
and s,

dao) 2 = - d h zoz) do, (76)
dz +6h(z) e dz
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-() a (0) + 20 zh's P' + 2+ (e de - e > (77)
Se( 2p ° h 2e (h de (77)

4 I (0 2 4 1 2 h' -
) 3 9 z 9 E0 h 3 T(s) dz. (78)

Equation (77) for the shear stress was obtained by rewriting equation (70) using da(°)/dz
obtained from (76). Note that (78) is evaluated following a material particle, i.e., e/h(z) =
constant.

The one boundary condition that remains to be satisfied is the requirement that the exit
tension is zero, i.e., equation (29). Since a() = r(0) + 3 S0) this condition can be written to
leading order as

a(0) (z = 1) - h3(l) s (, 1) de, (79)

which is a condition relating the exit values of cr() and s().
The only other information required to complete the problem is to determine where the

plastic flow first begins, i.e., we must determine the boundary separating the region which
is deforming purely elastically from the region of elastic-plastic deformation. We will refer
to this boundary as the elastic-plastic boundary. To determine this boundary it is necessary
to construct the solution in the neighborhood of the die entrance where the material is
deforming elastically. This is done in Appendix I and the key result is that the elastic-plastic
boundary is only a small perturbation from the entrance plane of the die z = 0. This result
is easily anticipated and follows from the assumption that = Yo/G is very small. Con-
sequently, equations (76)-(78) are solved in the region 0 < z < 1.

This completes the leading-order problem for the region which is deforming plastically.
Note that elastic effects begin to enter the picture at higher order through equation (57).
Namely the leading-order stress field appears as a volume source/sink-like term on the right
side of (57), i.e.,

V ' v( ) = -2v (80)
2(1 + v)/T kk

Since v'') is essentially known from integrating (54), equation (80) then allows the determina-
tion of v(') and the methodology can be pursued further to determine the corresponding
modification to the stresses. This elastic effect, however, is generally very small since a is
typically of O(10 - 3 ) and therefore the merit in presenting it is questionable. (Note that
inherent in the formulation is the assumption that a O(<f)).

4. Results and discussion

The deformation in the plastically deforming region is determined at leading order by solving
equations (76)-(78). If we take the characteristic stress a0 to be equal to I () I at the entrance[ahe etac
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z = 0, then the dimensionless stress ao(0) = -1. Using this and integrating (76) we find
_{0) in terms of sz),

e(p/~)H(z) 1- 3t [exp ([y/6]H(i)) d h) Q d5} (81)
U(°)() e- ~(M)H(z) {- _ 1[ h2() d Jo ] }- (81) 

where

dz
H(z)= 2 h(z)

Note that the characteristic pressure ao = oo~l was a convenient choice since it gives
a°)(0) = -1, but that its value is actually unknown. This is reflected in the fact that
boundary condition (80) now really represents an equation for = Y/oa or equivalently C0.
It is also beneficial to differentiate the flow-rule (78) and write it as

ds? ( 2 ds~0 ?2 16h' [(0)2 4 P -)
2

(3- n)/2
d 2 )5(0) z = _ +- -S() (2/3) (82)
dz + dz 9neoh 3 

where the derivative d/dz is a material or total derivative along the particle pathline or
streamline e = (z) which to leading order is given by Q/h(z) = constant since v =
h2 (0)/h 2(z).

An examination of the flow-rule (82) or (78) shows that the parameter p/t multiplying the
terms involving the shear stress controls much of the character of the solution. Recall that
p/t is the ratio of the characteristic shear stress and the characteristic yield stress po0 / Y0 and
therefore two limiting cases of practical interest include: (a) u/r < 1, corresponding to weak
shear stress and deformation which is a perturbation of homogeneous compression, and (b)
p/I = 0(1), which results in a significant shear effect and inhomogeneous deformation.
Remembering that the assumption of a "slug-like" flow requires 6/ ,c < 1, we see here that
case (a) which essentially corresponds to very small p will be valid for a wide range of die
wall slopes 6. However, case (b) which has a substantial shear effect will be restricted to
rather gentle die slopes, i.e., 6 < 0(1), in order to satisfy the axial velocity condition
6p/ < 0(1) when p/ = 0(1). Case (b) is clearly the case of most interest here and it is not
too suprising that the die wall slope must be moderately gentle in order to have a "slug-like"
flow even though there are significant shear stresses present. Note that if the statement
p/ = 0(1) is taken at face value, namely that shear effects are important only when p/ is
strictly of order unity, it would be tempting to neglect the terms involving s ) in equation (77)
for .() This is because the coefficient of these terms is 6 /(p/r) and we have required 6 to
be small in order to establish a "slug-like" flow in this situation (recall that we require
6p/ < 0(1)). However, as a practical matter we find that shear stresses begin to play an
important role at values of p/r which are actually rather modest in magnitude (see the
examples discussed below) and consequently we find that 6/(up/r) is not negligible when the
shear stress becomes important. In fact, we find that the terms involving s5() in equation (77)
often contribute 30% or more to the total value of the shear stress (this point will be
illustrated later in figure 11). With regard to this general point, one must keep in mind that
equations (76)-(78) are actually valid for p/t < O(1) and only when this parameter becomes
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very small do we attain a state of homogeneous compression. One can, however, base an ad
hoc theory on the omission of the terms involving sz°) in equation (77) for the shear stress
and obtain considerable simplification at the expense of a loss of accuracy. Such a theory is
related to a popular approximation made in sheet rolling analysis and it will be discussed in
section (c) below. A possible third case of interest for which p/z is large does not seem to be
of practical significance partly because u is typically rather small and therefore /T rarely
seems to be large, and also because if p/i is large, it is difficult for the "slug-flow" condition
6p/T < 1 to be satisfied for cases of practical interest.

The specific distinguished limit relevant for the two cases discussed above can be identified
more clearly when one realizes that is actually a function of p and 6. The fact that is
related to p and 6 follows from the fact that z = Y/ao involves a0 (the characteristic pressure
taken here to be 1(°6)(0)1) which is actually determined as part of the solution and corre-
spondingly depends on p and 6. This becomes clear when we apply the exit stress condition
(79) and rewrite it to obtain an expression for in terms of o[()(1) and sz°) ,

h2 (1) a°)(l)z (83)
3 S0h() eQs. (, 1) de

Clearly from (81) and (82) we see that a()(l) and s (Q, 1) depend on It and 6 and therefore
z is a function of u and 6. The dependence of T on u and 6 can, however, be identified a little
more precisely as follows. Since the pressure or - a (° ) is exponentially decreasing from the
entrance to the exit and s ) is an 0(1) quantity, (83) together with (81) lead us to the result
that - °)(1) = O(e- y/') and = O(e-/'). This now enables us to isolate the magnitude of
the friction coefficient in terms of 6 for the two cases of interest, namely /z ,< 1 and
/T = O(1). Since we can now write /z = O(pe-#/"), case (a) corresponding to homo-

geneous compression (valid when S/t < 1) gives p/ln (1/#) 0() and case (b) correspond-
ing to inhomogeneous deformation and a significant shear effect occurs when /T = 0(1)
giving t/ln (1/p) = 0(b).

(a) Homogeneous compression

In the first case of homogeneous compression the solution is readily obtained. If we neglect
terms of order (/t) 2 in the flow-rule (82) and integrate, we find the well-known result for s ),
i.e.,

s() = 1 - In (h) . (84)

Since s° ) is a function only of z (81) becomes

(0) = e-(/z{)H({-1 - 3t | [exp ((/ 6)H) d (s,) h2)] dz} (85)
L9Q [ 2h 2 dz

Lastly, using () and s we find the shear stress from (77),

) ( + 2 rhs(z) h. (86)4oz 5ee 2~ ZZ,/h
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(b) Inhomogeneous deformation

The case of most interest here is case (b) which has a significant shear effect. In this case it
is necessary to resort to numerical techniques to obtain the solution to (76)-(78). The
approach taken was to use an initial guess for the stresses and then to iterate on the three
equations to find the solution. The initial guess was based on a curve-crawling scheme started
with solutions for small , which were naturally close to homogeneous compression. The
scheme then crawled to larger values of using the previous solution as the first guess for
a new value of . The iteration scheme proceeded as follows: for a known , equation (82)
was solved for s) using a fourth-order Runge-Kutta scheme on each material pathline of
interest. The stress (O0) was then determined from (81) and substituted along with sP) into (77)

to find a new L). At this point another iteration is started. A summary of the iteration
scheme is given below in equations (87)-(89). Omitting the superscript (0) which denotes the
leading-order solution and writing instead s) = z, s' = sk, and g) = aQ where the
superscript k indicates the kth iterate, we have

d(s~)3 ( )2 d(gkz)2 16h, {[ 2 4 ( '))21dz 2 (s) Sk dC 2Z - {(S )2 + ( )g ]/(2/3)} ' (87)
dz dz 19nEoh 3 

se h2dz
_ 3 rC~[exp ([y1/]H) d IA 1 }

-= eh2/l - -f3z | [ Ph - Qs do d, (88)

~~ I k + k + -zh Sk ] + ·
Q[Qt 2 H ]h 2 H {(h) j) 0 "do - Q d} (89)

Note that the last equation involves mixed-order iterates, i.e., it computes the required value
of the shear stress based on s. and a'e where these quantities were computed with a previous
value of the shear stress. Therefore the residual or error to monitor in evaluating the
accuracy of the final solution is the quantity kz+ - kz which is conveniently normalized by
the local value of the yield stress. The iteration scheme was terminated when this residual was
less than 10- 3 and this typically occurred within fifty iterations. The die was divided into
twenty segments (21 nodes) from centerline to the die wall and forty segments (41 nodes)
from entrance to exit.

The results which will be discussed in detail shortly show that as is increased the shear
stress at the die faces naturally increases and the magnitude of s) decreases. The place where
this is most severe is at the die surface right at the entrance, i.e., at = h (0). Recalling that
the theory is based on v - v'(z) and that this requires the term o,/()ls) 2< O(1) (see
equation (60)), we see that the basic theory fails when sz) becomes sufficiently small such that
flv(?) becomes comparable in size to vz). Consequently, no solution exists within the scope
of the present theory above some maximum value of p which depends on the values of the
other parameters in the problem. This breakdown of the approximation was manifest in the
numerical scheme which required an increasing number of iterations and eventually did not
converge as was increased further. One place where the source of the difficulty in the
numerical scheme is easily identified is in the appearance of a term l/sz ) (the origins of which
stem from hardening due to shear strain) on the right-hand side of the yield condition (78).
In practice, as u gets large and s? ) becomes small, the derivatives with respect to z become
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large near the entrance where the shear is largest and obtaining a converged solution
becomes increasingly difficult. For the specific cases, failure of the present approxima-
tion and violation of the near "slug-flow" requirement occurred at values of P between
0.10 and 0.20. The rate of convergence for values of u approaching the point where
s) begins to get small was generally improved by underrelaxing on the shear stress in the
iterative procedure.

(c) An approximate model

Returning to equations (76)-(78) it is interesting to extract from these equations a greatly
simplified ad hoc model or approximation which has a direct analogy with a popular
approximate theory frequently used in plane-strain sheet rolling. The approximate theory in
sheet rolling to which we are referring is the inhomogeneous theory due to Orowan [12]. For
a recent application of this theory, see Venter and Abd-Rabbo [14]. Orowan derived his
approximate theory for inhomogeneous deformation by drawing a somewhat ad hoc
analogy between the stress field present in rolling with that found by Prandtl [13] for a
plastic strip being compressed between parallel plates. The ad hoc nature of this formula-
tion has been previously pointed out by Alexander [15]. Within the framework of the
present formulation an approximation exactly equivalent to Orowan's, but found in
a very different way, can be obtained as follows: the coupling between (10) and s in
equation (77) is omitted by discarding the terms involving s °) in (77) so that [0>) is approxi-
mated by ca°)(z)e/h. The result {z) a(o)Q/h is then substituted into the left hand side of the
flow-rule equation (78). The term involving the shear stress within the integral on the
right-hand side of (78), however, is either omitted so that the integral can be computed
explicitly (the value of the flow stress or current yield stress for homogeneous compression),
or an expression for the flow stress is prescribed. In either case we have the following
approximation for (78),

s()2 + (u) Szo)2 = y2(z),

zs?= y2(z) _ _ aoQ)(z)) (90)

where y(z) is a known function, e.g., the right-hand side of equation (78) omitting the term
(#PS)/rzs)) 2. Equation (90) can now be substituted into the right-hand side of (76) and the
integral can be evaluated, i.e.,

h Y 1 - A(2/h2d = y22f o~': de = y(z) e1 l la2 - Y~h2 [1 - (1 - a2)3 2] = yh2 o(a),
(91)

where

C(0)(z)
a = 2 T yO(z)

(z)
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and we define a function co(a) = [1 - (- a2)3 2]/3a2 analogous to the inhomogeneity function
introduced by Orowan. Lastly using (91), (76) now becomes a nonlinear ordinary differential
equation for (o which we rewrite in more familiar terms as

d dh2

d (bh)2 [(') + 3yco(a)]} _ 2 _ () + 26hjlaao = 0. (92)

This equation is analogous to the equation for the roll pressure in classical rolling theory.
Note that - () is approximately equal to the roll pressure and po,, appearing in the last
term above is the approximate shear stress at the die surfaces. There has clearly been an
enormous reduction in the complexity of the mathematical problem, since we now have the
single equation (92) to solve to complete the solution.

The simplification described above associated with the Orowan approximation intro-
duces one well-known predicament concerning the stress boundary conditions. Namely,
under the present circumstances where we have effectively decoupled the equations it
is quite possible for the shear stress at the die walls e = h to exceed the local yield
stress in shear, i.e., sa (i/z)ao can exceed the limiting value (/3/2)y(z). This is a
consequence of omitting the terms involving s) in (77) which couple s and the shear
stress, and also due to the applied friction boundary condition. The dilemma is remedied in
rolling (as it would be here also) by changing the boundary condition from a friction
condition to a condition requiring the shear stress to equal its current yield value at points
where the shear stress would exceed its yield value using a friction condition (see, for
example, Alexander [15]). Changing the boundary condition amounts to replacing the shear
stress term par°) in (92) by the local value of the yield stress or flow stress in shear, say
k = ( 3/2)y(z). That is, when solving (92) the shear stress term is taken to be equal to pa,,
or k whichever is smaller.

Note also that within the context of the complete set of equations (76)-(78) it is not
actually possible for s(0) to equal its current yield value because this would imply that s)
vanishes and this is not possible in light of the flow-rule (78). From equation (78) we see that
the shear strain rate term p.O/s() on the right hand side prohibits s®) from vanishing over
any finite interval since this would result in infinite hardening (such an occurrence, of course,
would also violate the near slug-flow requirement because it would imply large transverse
velocity variations, see (62)). Consequently, although changing the boundary condition in
the Orowan-type inhomogeneous theory generally allows calculations to be completed to
larger values of p than would be possible otherwise, the rigorous basis for this step is
questionable and it can only be viewed as a model. The entire approximation discussed above
is clearly ad hoc in nature and any results obtained from it must be used with a great deal
of caution. Based on this only a limited number of examples were examined using this
approximation. Note, however, that the equivalent approximation is used in rolling analysis
quite frequently.

Another popular approximation in rolling, which precedes the inhomogeneous theory of
Orowan discussed above and also has an analogy in conical extrusion, is the homogeneous
theory originally due to Von Karmin [16]. This case is similar to that described above
and can be obtained from the present development by omitting all shear effects on sz,
i.e., s ) is assumed to be given by its value in homogeneous compression. In place of
(90) we simply have s ) = y(z) (or equivalently equation (84)) and this is equivalent to
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taking co(a) = 1/2 (a = 0) in equation (92). This approximation is, of course, identical
to the solution for homogeneous compression discussed in section (a) above. In fact,
equation (92) with wo(a) = 1/2 is easily transformed into equation (76) where s ) is given
by its result for homogeneous compression (84). From the present development we now
see that Von Karman's homogeneous approximation represents a rational limit of the full
equations, i.e., j/ << 1, whereas Orowan's inhomogeneous theory represents an approxi-
mate model.

(d) Examples

Results for four examples which summarize the overall behavior of the solution are now
presented. In each case the parameters in the work-hardening expression (7) were taken to
be: n = 10 and Eo = 0.02. These values are representative of mild steel, although, changing
them to more precisely fit a specific material behavior does not alter the qualitative character
of the results to be discussed here. We limit our attention to conical extruders and the die
radius is prescribed by h(z) = [1 - r(2/L)] where ho is the entrance die radius and r is the
radius reduction. The first three examples, examples I, II and III, correspond to a reduction
in radius of 25% (r = 0.25). In example I 6 = 0.05 (ho/L = 6/r = 0.2), in example II
6 = 0.125 (o/L = 0.5) and in example III 6 = 0.25 (ho/L = 1.0). These cases correspond
to die wall slopes of about 3, 7°, and 14°, respectively. The fourth example (example IV) is
similar to example III except that it considers a rather large radius reduction of 50%
(r = 0.5). In example IV 6 = 0.25 (ho/L = 0.5) giving a die inclination angle of 140 which
is the same as in example III. The values of the parameters for the four examples are
summarized in Table 1. We are primarily interested in those cases for which there are
significant shear stresses and therefore we have limited ourselves to rather small values of 6
as required (recall that we must have 6p/z < 1 and we are primarily interested in /

= 0(1)). For these specific examples we find that the asymptotic theory fails to be valid
for values of u greater than: 0.11 in the example I, 0.16 in example II, 0.20 in example III,
and 0.10 in example IV. That is, above these values of the friction coefficient the theory fails
to be valid because the velocity variations in the transverse plane become substantial and the
magnitude of f/v(') becomes comparable to v ). This is consistent with the fact that above
these values of p it became difficult to obtain a converged solution from the iterative scheme.
In example I we present results for four values of the friction coefficient, p = 0.06, 0.08 and
0.11, in example II the values of friction coefficient considered are p = 0.08, 0.12 and 0.16,
in example III we consider p = 0.14, 0.17 and 0.20, and in example IV we consider
p = 0.08, 0.09 and 0.10.

Due to the greater slope of the die in examples III and IV the shear effect is generally
greater for these examples. In addition, due to the large reduction in example IV, shear

Table 1. Parameter values for the four examples considered

Example Radius = Ah/L ho/L
reduction (Slope)

I 25% 0.05 (3°) 0.20
II 25% 0.125 (70) 0.50
III 25% 0.250 (140) 1.00
IV 50% 0.250 (140) 0.50
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Fig. 2. Die pressure field (Ie,, I/Yo) versus z for examples I, II, III (25% reduction) shown in figures (a), (b) and

(c) respectively. In each figure results are shown for the present theory and that predicted assuming homogeneous

compression, i.e., s_. given by (84).
Figure (a), 6 = 0.05. Present theory: p = 0.06, ; p = 0.08, ; = 0.11, -; homoge-

neous compression; F = 0.06,-- ; p = 0.08, --- ; p = 0.11,....

Figure (b), 6 = 0.125. Present theory: p = 0.08, ; t = 0.12, -- ; p = 0.16, -- homoge-

neous compression: p = 0.08, - - ; = 0.12, --- ; p = 0.16, ....

Figure (c), 6 = 0.25. Present theory: p = 0.14, ; p = 0.20, -- ; homogeneous compression:

p = 0.14,- ; iu = 0.20, ....

effects become significant at smaller values of the friction coefficient. For example, in

example III there is a 18% velocity variation from centerline to die wall at the entrance when

# = 0.20, but in example IV a variation of this magnitude occurs at a much smaller value

of u, namely, when ji = 0.1 (note that III and IV have the same slope parameter 6 = 0.25).

In Fig. 2 the die pressure (i.e., the normal stress on the die walls) normalized by the yield

stress Y0, i.e., JI / YO = I a[° ) /, is plotted versus axial position z for p = 0.06, 0.08 and 0.11

in example I, for y = 0.08, 0.12 and 0.16 in example II, and for p = 0.14, 0.17 and 0.20 in

example III. Note that for the relatively small slopes being considered IelI is, to leading

order, equal to the normal stress on the die walls. Also shown in Fig. 2 are the corresponding

pressure distributions predicted for the same values of p assuming that s( ) is given by the

result for homogeneous compression, i.e., a(0) computed from (81) using s!° ) given by (84)

for homogenous compression. The pressure magnitude is generally greater in Fig. 2a than
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in 2b or 2c because Io/L is smallest in 2a and therefore the die is essentially longer for the

same value of h0. For the longer die the net resistance to flow is greater and the pressures
are correspondingly higher. Naturally as the friction coefficient increases the die pressure
distributions generally increase, again due to the generally greater resistance. The pressure
computed assuming an s) based on homogeneous compression and therefore neglecting
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Fig. 5. s, verus Q/h for example IV (6 = 0.25 and a 25% reduction) with p = 0.08 in figure (a) and p = 0.10 in
(b). Six axial locations are shown in each case: z = 0, ; z = 0.122, ; z = 0.268, ;
z = 0.512, --- ; z = 0.756, ;-- ; z = 1.0, ....

shear stresses is always over predicted; the worse case, pL = 0.20 in example III, shows a
pressure difference of about 22%. In addition, as It increases the difference between the
predictions from the present theory and that of homogeneous compression increases due
to the greater role played by shear stresses. In Fig. 3 we compare the die pressure for
example III computed from the present theory with the results computed based on the
inhomogeneous theory analogous to Orowan's rolling theory (i.e., the solution to (92))
and to the case of homogeneous compression which was already shown in Fig. 2c. This
figure is typical of what we find in all cases, namely, the inhomogeneous Orowan theory
generally corrects for shear effects partially and gives better agreement for the pressure with
the results of the more complete theory. However, due to its rather ad hoc nature, it is
difficult to be certain when it will give reliable results. Lastly, since we have chosen to plot
I, l/Yo in the figures, note that the value of z -r = ao/Yo is obtained from the value of
I,, I/YO at z = 0.

The departure from a state of homogeneous deformation is shown in Figs. 4 and 5 where
s(0) is plotted versus Q/h for six axial locations. Fig. 4 corresponds to results for example I
with p = 0.08 in Fig. 4a and p = 0.11 in Fig. 4b. Figure 5 corresponds to results for
example IV and p = 0.08 in Fig. 5a and /u = 0.10 in Fig. 5b. The value of s() along the
centerline q/h = 0 corresponds to the value for homogeneous compression and therefore the
variation from homogeneous compression is easily seen. As expected, for small values of u
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Fig. 6. Axial velocity variation from centerline to die wall for example III (6 = 0.25 and a 25% reduction) and
= 0.20. Figure (a) is a plot of [v:(e, z) - v(O, z)]/vz(0, z) versus and (b) is a schematic of the axial velocity

in the die shown as a dashed line. Note that in (b) the velocity at each axial location is normalized by the value
at the centerline and therefore it appears that each location has the same centerline magnitude. The actual velocity
is obtained by multiplying by v? ). Five axial positions are shown: z = 0, ; z = 0.268, ; z = 0.512,
.. ;z = 0.756, --- ; z = 1.0, --

the solution deviates the least from homogeneous compression. The variation of s() with
respect to is largest for the larger values of u in each case, particularly near the entrance
z = 0 where the pressures and therefore the shear stresses are largest. Close to the wall at
the die entrance we see that s ) can become rather small, indicating that there is considerable
shearing. In fact, from Fig. 4b we see a case where sz) is close to zero at the wall and therefore
the shear stress is near its yield value. Note that s ) adjusts and becomes nearly uniform
as the material progresses from entrance to exit, i.e., as z increases. For the dies under
consideration the variation of s() at the die exit was generally less than about 20%.
Apparently the relatively rapid shearing deformation at the entrance has sufficient time to
readjust itself so that by the time the material reaches the exit, the shearing motion has
weakened noticeably. The longitudinal stress distributions shown are representative of the
behavior seen in all of the cases examined.

In Fig. 6 the transverse variation of axial velocity vz for example III is show for five axial
locations. In Fig. 6a we plot [v,(Q, z) - vz(O, z)]/v,(O, z) versus q for fixed values of z on an
expanded scale to show the percent variation in the axial velocity from the centerline to the
die wall. This result is readily obtained from the integration of (62). In Fig. 6b we show a
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Fig. 7. Axial velocity variation from centerline to die wall, for example II with = 0.16 (top; = 0.125 and a
25% reduction) and example IV with # = 0.10 (bottom; = 0.25 and a 50% reduction). Both examples have
ho/L = 0.5, but have different reductions and die slopes. Five axial positions are shown in the top figure: z = 0,
- ; z = 0.268, ; -- z = 0.512, ... ; z = 0.756, -- ; z = 1.0, -- . Three axial positions are
shown in the bottom figure: z = 0, ; z = 0.512, -- ; z = 1.0, ....

sketch of the axial velocity in the die (the dotted line represents the die wall). In Fig. 6b note
that the velocity at each axial location has been normalized by its centerline value and hence
at each axial position the centerline value in the figure appears to have the same magnitude.
The actual magnitude of the velocity is obtained by multiplying the results shown in Fig. 6b
by h2(0)/h(z)2, the value of the velocity on the centerline. It was more convenient to plot the
results as shown, due to the large increase in velocity which takes place from entrance to exit.
In Fig. 6a we see that the axial velocity varies by about 18% from centerline to die wall at
the entrance and by about 6% at the exit. Once again this indicates the tendency of the
deformation to readjust to a near homogeneous deformation. In Fig. 7 we plot the velocity
variation [v,(e, z) - v(O, z)]/vz(O, z) versus e for examples II and IV (o/L = 0.5 in both
cases). Naturally, example IV has a generally stronger shearing deformation at smaller
values of the friction coefficient due to the greater reduction in that case, i.e., a 50%
reduction in example IV versus 25% in example II.

In Figs. 8 and 9 we show the final deformation of an initially plane cross section which
entered the die. That is, results for the axial displacement at the die exit versus Q/h are shown
for each of the four examples and a variety of friction coefficients. As expected, as p increases

.
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Fig. 8. Axial displacements at the exit versus /lh which show the net distortion of initially plane cross sections.
Results are shown for examples I (top; r = 0.25, he/L = 0.2, 6 = 0.05) and III (bottom; r = 0.25, ho/L = 1.0,
6 = 0.25). Both examples have a 25% reduction, but example III has a die wall slope five times greater than that
of example I. A variety of friction coefficients are presented: top; # = 0.06, ; p = 0.08,- -- = 0.10,
... , , = 0.11, --- , and bottom; p = 0.14, ; p = 0.17, -- ; = 0.20, ....

the deformation from a plane section increases. In addition, the greatest die angle and largest
reduction, example IV (Fig. 9), has the most severe distortion of a plane section and the most
gentle die, example I, has the smallest final deformation. The displacements are very
reminiscent of those calculated by Lee, et al. [10] using finite element methods. In Fig. 10 we
show a typical comparison of the deformation predicted by the present theory and that
predicted by the approximate inhomogeneous theory discussed in Section (c) (i.e., the
Orowan-type model). The deformation is underestimated when the Orowan approximation
is used and this is due to the fact that the shear stresses are always under predicted and
therefore the transverse variation of the axial velocity determined from (62) is under
predicted. A typical comparison of shear stress at the die wall predicted by the present theory
(i.e., equation (77)) and the Orowan-type model is shown in Fig. 11. The large difference
between the two is readily attributed to the omission of the terms involving s() in (77). In
this case the parameter T/P which affects the magnitude of these terms is approximately 0.57
(i = 0.20, 6 = 0.25 and r obtained from Fig. 2c is about 1/2.2 = 0.45), but the parameter
6,/r establishing a "slug-like" flow is about 0.11 in this case. Generally as 6 decreases (milder
slopes) we find that decreases (note Figs. 2a-2c) and consequently the accuracy of the
approximate Orowan-type theory improves because 6T/u decreases.
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Fig. 9. Axial displacements at the exit versus Q/h which show the net distortion of initially plane cross sections.
Results are shown for examples II(top; r = 0.25, ho/L = 0.5, 6 = 0.125) and IV (bottom; r = 0.50, ho/L = 0.5,
6 = 0.25). Both examples have ho/L = 0.5, but have different reductions. A variety of friction coefficients are
presented: top; p = 0.08, ; It = 0.12, - ; = 0.16, .. ,and bottom; p = 0.08, ; I = 0.09,

- ; = 0.10 ....

Lastly, in Fig. 12 we show a typical variation of flow stress as a function of axial position
for three radial positions /lh = 0, 0.55 and 1.00, i.e., along the centerline, about midway to
the die wall and along the die wall. The increase in the flow stress is naturally greatest along
the wall due to the greater shearing there and the corresponding increase in hardening which
is present there. Furthermore, since there is little difference between the results for Q/h = 0
and 0.55, we find that the flow stress differs significantly from the value predicted by
homogeneous compression only close to the wall. However, even along the wall the dif-
ference is not very severe. Also note that the difference is due to a more rapid hardening
primarily near the entrance and thereafter the yield stress along the centerline and at the wall
increase at a nearly equal rate.

5. Conclusions

We have investigated steady-state extrusion of an isotropic power-law hardening material
when the axial velocity is nearly "slug-like". The particular asymptotic limit considered,
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Fig. 10. Axial displacements at the exit versus e/h which show the net distortion of an initially plane cross section.

Results are for example III (r = 0.25, 5 = 0.25) with p = 0.20. Present theory:...; approximate inhomogeneous

theory (equivalent Orowan theory), --
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Fig. II. Shear stress at the die wall e = h versus axial position z for example II ( = 0.125, r = 0.25) with

p = 0.16. Present theory -; approximate inhomogeneous theory (equivalent Orowan theory),

namely 6#/T < 0(1), generally has significant shear stresses and captures the first manifesta-

tions of inhomogeneous deformation. Transverse variations in the axial velocity are modest

in size due to either a very small friction coefficient p or due to gentle die wall slopes,
6 < 0(1). When the friction coefficient is very small the stress field is that of homogeneous

compression, i.e., negligible shear stress and longitudinal deviatoric stress given by equation

(84). When the friction coefficient is on the order of 0.1 or greater, shear stresses become

significant, i.e., on the order of the longitudinal deviatoric stress, and consequently a stress state

which departs from homogeneous compression exists. A number of examples are considered

and the typical departures which we find from homogeneous compression are discussed.

The present formulation also allowed us to develop a theory of extrusion which is analogous

to the very popular inhomogeneous theory of sheet rolling developed by Orowan. The key

assumptions of an "Orowan-type" inhomogeneous theory are shown to be somewhat ad hoc

in nature and limitations of the theory are illustrated by the examples presented. For rough

estimates, however, the extreme simplicity of the Orowan-type theory is very attractive.

The asymptotic theory developed only puts a dent in a small corner of a difficult problem,

but it is believed that it contributes to our basic understanding of the subject. The theory also
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Fig. 12. Typical result for yield stress versus axial position z for three radial positions: e/h = 0.0, -;
0.55 ... ; 1.0, - - The results shown are for example III and p = 0.14 in the top figure and p = 0.20 in
the bottom figure.

offers a potentially useful simple special case against which much more elaborate numerical
codes could be tested to assist in their verification.
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Appendix I

Elastic entrance region

Here we consider the solution in the elastic region at the entrance to the die. It is well-known
that the elastic strains in this region are of order = Yo/G and therefore very small. In this
case the governing equations can be reduced to those of linear elasticity. In particular, since

/>_D,,_ 

r

;; o ' '.'

I

I
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the stress rate si & Dsi, /D[ and O5i / 0aj ; (D/D[) (d fi 0j, ), where f is the displacement field
and D/Dt the material or convective derivative, we can rewrite the dimensionless governing
equations in the usual form for linear elasticity, i.e.,

e - 3ekk5i - 2 s, (I 1)

1 - 2v 1

2(1 + v) (2)

where -(uij + uj,i) = cae and the presence of = Yo/G in this expression is consistent
with the nondimensional form of the equations being used (see (18)-(20)); note that
we have normalized the strains as follows: ei = /(Yo/G). Also note that the appearance
of r = Y/a in equation (I 2) is related to the different scalings used for ao and sij (see (I 1)
and (I 2)), namely ai = , /a0 and s = / Y0. Furthermore, taking cylindrical coordinates
and considering axisymmetric deformation these can be recast in the well known form

auo
-= CC*{ee - V(a** + azz)}, (13)

-Z = a* uzz - V(ee + a,)}, (14)

ue = ca*{ao - v(ao + a)}, (15)

U + 2 = 6a5 SZ, (16)

where we define a* = c/[2r(1 + v)]. As before has been made dimensionless using Ah and
z = 2/L. Similarly, the displacements have been made dimensionless as follows,

U = ,0/Ah, u = i:/L. (17)

Lastly, from (I 3)-(I 6) we see clearly that the elastic strains are of order (note aX* = O(a)).
From (I 6) we find that at leading order u - u(z). Consequently, 02uz/a1Oz = 0 which

from (I 4) allows us to write

a
- lazz - V(ee + +)} = 0. (I8)

Now we can write

a e Q _ )= C*Q {a - V(O + A)}, (I9)
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using (I 5). After substituting for a,, /aQ obtained from (I 8) we find

From the radial equilibrium equation (41a) we have, neglecting terms of O(yub),

aO = u , (I1 1)

and therefore substituting a,, /aQ into the right side of (I 10) gives

aUe _ Ue C*(l + v)e{(1 -v) A vee (I12)

Alternatively, computing Ou. /aQ - ue /Qle directly from the difference between (I 3) and (I 5)
we have

aoo _ 7ee - ca

e e11

which when substituted into the equilibrium equation (I 1) gives

(fee + oo) = 0, ue + a,, = function(z). (114)

Using this in ( 8) then gives,

au- = 0 or uo = -zz(z). (115)

Taking the sum of ( 3) and (I 5) we also have

au, + U = I (Qu,) = a*{(1 - v)(o,, + ot) - 2vuj F(z), (116)

which, since the right-hand side is a function only of z (from (I 14) and (I 15)), we can
integrate to find u,

u = ±F(z), (I 17)
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where we have applied the symmetry condition UQ(0, z) = 0. The function F(z) defined in
(I 16) and appearing in (I 17) is determined by the boundary condition on the radial dis-
placement at the die faces = h(z), i.e.,

= f(z) - f0),

or in dimensionless terms,

UQ = h(z)- ho,

where h = (0)/Ah, giving

F(z) = 2[h(z) - ho]/h(z). (118)

From the radial displacement field we now see that u,/e = au,/ OQ and therefore returning
to (I 13) we see that

ot*(1 + v)(oao - oa) = 0,
(I 19)

and consequently,

so = S,. (120)

Since we found azz = a:(z) the shear stress is determined from the axial equilibrium
equation (41b) by integration as,

6 da. :
- - d- 2 (121)

ju dz2'

where, by symmetry, we have applied Sz(O, z) = 0. In addition, from the definition of F(z)
in equation (I 16) we can also express a,, in terms of azz using (I 19) as

-= 1 Vaz + * F(z)} where F(z) = 2(h - h)/h. (122)

Finally, azz is determined from the friction condition (42) at the die faces using the
expressions for 9SZ and a,, obtained above, i.e.,

0e - -- h'(aee - za) = 0 on = h(z),

da-z r[vP/6 +h'(l -2v) az /16 - h' ho,-h) (23)

dz 1- V Ih(z) C *(1 - v) h2
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which is a differential equation for the axial stress. If we are considering a configuration as
shown in Fig. 1, then prior to when the material enters the die, i.e., for z < 0, the material
has a constant radius and shear free surfaces. Consequently, it is appropriate outside the die
entrance to take h' = 0 and ju = 0 for z < 0 giving da, /dz = 0 or azz = constant as
expected under these circumstances. The boundary condition to be used when solving (I 23)
will be discussed shortly. Once (I 23) is solved for a,,, the stress field in the elastic zone is
known and direct integration of (I4) determines uz(z).

The only unfinished task is to determine the elastic-plastic boundary zP = z(e). This is
obtained from the yield criterion

3S + S2 = 3 (I 24)
4Szz z 3'

recalling that Se. = (/Tt)§~. Substituting for dazz/dz obtained from (I23) in the expression
(I21) for se: and evaluating s,, = (2/3z)(a, - a,,) using (I 22) we have

Se: = azz + F(z)}. (125)

where,

a = [vp + h'(1 - 2v)]/[(1 - v)], b = [ - h'/[2T(l -v)],

and

s.Z = fazz + I F(z), (126)
oC*g

where

2
f = L (1 - 2v)/(l - v), g = 3(v - 1).

The yield criterion equation (I 24) can now be written as

(a*S:.)2 4 t*Sez)2 = ( 2

a. ZZ 3 = ZZ (a,,

Defining G(z) = - F(z)/gaz = 2(h0 - h)/hg az and using (125) and (126) we obtain

(G _- *f) 2
+ ( c l ) (G -- *c2 )

2
= *2 3 , (I27)

where

_ 2(1 - 2v)
3r(1 - v)'



Conical extrusion of a work-hardening material

c, = bg = - 3( - h'),
(I 28)

vp + h'(1 - 2v)
6( a/bg - h')(l - v)'

c3 = 4/.

Now recall that a* introduced in (I 3)-(16) is equal to a/[2T(l + v)] and that it is very small
since = Yo/G is small. Consequently, in order for the sum of the squares in (127) to be
of O(a2), clearly G = 2(ho - h)/ghazz = O(a) which implies that h(z) = h(l - rz) =
h0 + O(a). That is, the elastic-plastic boundary in the present approximation is only a small
perturbation from the entrance plane of the die z = 0. Consequently, within the accuracy
of the present approximation the boundary conditions on the plastic region can be applied
at z = 0. This of course is a great simplification. The shape of the elastic-plastic boundary
predicted from (I 27) at higher order will be discussed shortly.

It is now important to note the following character of the solution. The elastic loading
region is coupled to the region of plastic deformation through the stress condition required
to solve (I 23) for azz in the elastic region. In contrast, since we have determined the
elastic-plastic boundary to be z 0, the deformation in the plastically deforming region can
be solved (equations (76)-(78)) independent of the solution in the elastic region, at least to
leading order.

Returning to the boundary condition on azz(z) in the elastic region, the appropriate
condition on a-. (z) is that the axial stress at the elastic-plastic boundary be continuous. Now,
in the plastic region we have a°z = a(0) + Tszos) and, although a() is a function only of z in
the plastic region, s?) is in general a function of Q and z. Consequently, the axial stress
continuity condition can be satisfied approximately by requiring that the net axial force be
continuous. To leading order this condition may be written as

eastic = 2 qP(astic (e, O) de = a(°(0) + 3 S es) (, 0) de. (129)

The inability to satisfy the boundary condition exactly implies that there is generally a
small region of nonuniformity in the elastic zone and an inner solution in this region
is required to satisfy the stress condition exactly. An exception to this occurs if P is suf-
ficiently small, in which case s(z) is a function only of z (i.e., homogeneous compression)
and the stress boundary condition can be met exactly. Although we have not pursued
the solution in this inner region (in fact, obtaining an analytic description is probably
hopeless), it would likely be one for which the axial and radial derivatives are of the same
order of magnitude. As already mentioned, however, the elastic solution, including a
possible inner elastic region, has no effect on the leading-order solution in the plastically
deforming region determined from (76)-(78). Lastly, note also that condition (I 29) is very
similar to the approximate net-force condition imposed at the exit to the die (equation (29)).
Namely, at the exit a small region of nonuniformity also exists, but we apply a condition on
the net axial force.
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e/h

1 1.25 1.5 1.75 2

Z/aC?

Fig. Al. Axial position of elastic-plastic boundary versus e/h for example II ( = 0.125, r = 0.25). Note that z
is normalized by c* where typically cc* = O(10 3). p = 0.08, ; p = 0.12 ... ; = 0.16, ---.

In any case, for any practical purposes the solution of (I 23) using the condition (129)
should give adequate results. For the situation shown in Figure 1 (see the discussion
following (I 23)) the leading-order solution to (I 23) outside the die, i.e., z < 0, is azz =
constant. Since we found that the elastic region extends within the die by an amount of order
a, then it is appropriate to introduce into (I23) z = aZ (Z = 0(1)) for this region and
expand azz in terms of a. Naturally, the leading-order solution is once again a,, = constant
and the constant value is found from the boundary condition (I29) at the elastic-plastic
boundary once the solution to (76)-(78) has been obtained. This, of course, also sets the
value of the az. outside the die for z < 0. If desired, order modifications to the stress can
be computed for the small region inside the die, but these are likely to be of little practical
value since = 0(10-3). Note that the leading-order constant value of azz obtained from
(I 29) can now be used in (I 27) and the shape of the elastic-plastic boundary can be
determined.

We can now return to equation (I27) and evaluate the shape of the elastic-plastic
boundary for a typical example. In the case of a conical extruder h(z) = h(l - rz) which
gives G(z) = 2(h0 - h)/hga- = 2rz/[(1 - rz) 3(v - 1) z]. Furthermore we let z = cc*Z
and therefore G(z) 2cc * rZ/3za..(v - 1) and (I27) becomes

(cZ -_ )2 +_ ( ( ) (Z - c2)
2

=C 3

where c = 2r/3tzu(v - 1). As a typical case consider example II (6 = 0.125, r = 0.25)
and take Poisson's ratio v = 0.3. When = 0.08 we find z = 0.424 and azz = -0.604
(note a,, appears in the coefficients c and c3 and is obtained from (129)), when p = 0.12 we
find z = 0.369 and a = -0.680, and when = 0.16 we find = 0.325 and azz =
-0.751. In Fig. Al we plot Z = z/ca* versus Ql/h for these three values of the friction
coefficient. As expected, as increases the elastic-plastic boundary moves closer to the
entrance of the die. Also note that the elastic-plastic boundary is always closer to the
entrance at the die wall due to the larger shearing occurring there.
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